An ecological function and services approach to total maximum daily load (TMDL) prioritization.
نویسندگان
چکیده
Prioritizing total maximum daily load (TMDL) development starts by considering the scope and severity of water pollution and risks to public health and aquatic life. Methodology using quantitative assessments of in-stream water quality is appropriate and effective for point source (PS) dominated discharge, but less so in watersheds with mostly nonpoint source (NPS) related impairments. For NPSs, prioritization in TMDL development and implementation of associated best management practices should focus on restoration of ecosystem physical functions, including how restoration effectiveness depends on design, maintenance and placement within the watershed. To refine the approach to TMDL development, regulators and stakeholders must first ask if the watershed, or ecosystem, is at risk of losing riparian or other ecologically based physical attributes and processes. If so, the next step is an assessment of the spatial arrangement of functionality with a focus on the at-risk areas that could be lost, or could, with some help, regain functions. Evaluating stream and wetland riparian function has advantages over the traditional means of water quality and biological assessments for NPS TMDL development. Understanding how an ecosystem functions enables stakeholders and regulators to determine the severity of problem(s), identify source(s) of impairment, and predict and avoid a decline in water quality. The Upper Reese River, Nevada, provides an example of water quality impairment caused by NPS pollution. In this river basin, stream and wetland riparian proper functioning condition (PFC) protocol, water quality data, and remote sensing imagery were used to identify sediment sources, transport, distribution, and its impact on water quality and aquatic resources. This study found that assessments of ecological function could be used to generate leading (early) indicators of water quality degradation for targeting pollution control measures, while traditional in-stream water quality monitoring lagged in response to the deterioration in ecological functions.
منابع مشابه
A Benefit-cost Analysis of Total Maximum Daily Load Implementation
Total Maximum Daily Load (TMDL) implementation generates benefits and costs from water quality improvements, which are rarely quantified. This analysis examines a TMDL written to address bacteria and aquatic-life-use impairments on Abrams and Opequon Creeks in Virginia. Benefits were estimated using a contingent valuation survey of local residents. Costs were based on the number and type of bes...
متن کاملA method for comparative analysis of recovery potential in impaired waters restoration planning.
Common decision support tools and a growing body of knowledge about ecological recovery can help inform and guide large state and federal restoration programs affecting thousands of impaired waters. Under the federal Clean Water Act (CWA), waters not meeting state Water Quality Standards due to impairment by pollutants are placed on the CWA Section 303(d) list, scheduled for Total Maximum Daily...
متن کاملFour Total Maximum Daily Loads for Legacy Pollutants in the Arroyo Colorado Above Tidal and the Donna Reservoir and Canal System
Section 303(d) of the Clean Water Act requires all states to identify waters that do not meet, or are not expected to meet, applicable water quality standards. For each listed water body that does not meet a standard, states must develop a total maximum daily load (TMDL) for each pollutant that has been identified as contributing to the impairment of water quality in that water body. The Texas ...
متن کاملStochastic Watershed Water Quality Simulation for Tmdl Development – a Case Study in the Newport Bay Watershed
Systematic consideration of uncertainty in data, model structure, and other factors is generally unaddressed in most Total Maximum Daily Load (TMDL) calculations. Our previous studies developed the Management Objectives Constrained Analysis of Uncertainty (MOCAU) approach as an uncertainty analysis technique specifically for watershed water quality models, based on a synthetic case. In this stu...
متن کاملIncorporating Uncertainty in Watershed Management Decision-Making: A Mercury TMDL Case Study
Water quality impairment due to high mercury fish tissue concentrations and high mercury aqueous concentrations is a widespread problem in several sub-watersheds that are major sources of mercury to the San Francisco Bay. Several mercury Total Maximum Daily Load regulations are currently being developed to address this problem. Decisions about control strategies are being made despite very larg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental monitoring and assessment
دوره 186 4 شماره
صفحات -
تاریخ انتشار 2014